التسليم السريع لكرة القدم والسلة

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة(ComplexNumbers) << فانتازي << الصفحة الرئيسية الموقع الحالي

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1شرحدرسالأعدادالمركبة

تاريخالأعدادالمركبة

ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتكعيبية.لميكنهناكتفسيرمنطقيلهذهالأعدادفيالبداية،ولكنمعتطورالرياضيات،أصبحتأساسيةفيالعديدمنالمجالات.

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

خصائصالأعدادالمركبة

  1. الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
  2. الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
  3. القسمة:يتمضربالبسطوالمقامفيمرافقالمقام

التمثيلالهندسي

يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

الصيغةالقطبية

يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاويةمعالمحورالحقيقي

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

تطبيقاتالأعدادالمركبة

  1. فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
  2. فيمعالجةالإشاراتالرقمية
  3. فيميكانيكاالكم
  4. فيالرسوماتالحاسوبية

خاتمة

الأعدادالمركبةليستمجردمفهومنظري،بللهاتطبيقاتعمليةواسعةفيالعديدمنالمجالاتالعلميةوالتقنية.فهمهذهالأعداديفتحالبابلفهمأكثرتعقيدًاللرياضياتوتطبيقاتهافيالعالمالحقيقي.

شرحدرسالأعدادالمركبة

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1

شرحدرسالأعدادالمركبة

تاريخالأعدادالمركبة

ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتيلايوجدلهاحلفينطاقالأعدادالحقيقية.تمتطويرهذاالمفهومبشكلكاملفيالقرنالثامنعشربواسطةعالمالرياضياتليونهاردأويلر.

شرحدرسالأعدادالمركبة

خصائصالأعدادالمركبة

  1. الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
  2. الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
  3. القسمة:يتمضربالبسطوالمقامفيمرافقالمقام

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي-هذاالتمثيليعرفباسم"مستوىالأعدادالمركبة"أو"مستوىأرغاند"

شرحدرسالأعدادالمركبة

الصيغةالقطبيةللأعدادالمركبة

يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاوية(الوسيطة)

شرحدرسالأعدادالمركبة

تطبيقاتالأعدادالمركبة

  1. فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
  2. فيمعالجةالإشاراتالرقمية
  3. فيميكانيكاالكم
  4. فيالرسوماتالحاسوبية

خاتمة

الأعدادالمركبةتلعبدوراًأساسياًفيالعديدمنفروعالرياضياتوالعلومالتطبيقية.فهمهايتطلبإدراكالعلاقةبينالجزءالحقيقيوالتخيلي،وكيفيةتمثيلهاهندسياًوجبرياً.معالتقدمفيدراسةهذاالموضوع،سيكتشفالطالبعالمًاغنيًامنالتطبيقاتالعمليةوالنظرية.

شرحدرسالأعدادالمركبة

قراءات ذات صلة

من هو الفائز بدوري أبطال أوروبا 2023-2024؟

نادي أستون فيلا: تاريخ عريق ومستقبل مشرق

نادي توتنهام هوتسبير: تاريخ من الشغف والإنجازات

نادي مانشستر سيتي: قوة جديدة في كرة القدم العالمية

موعد قرعة دوري أبطال أوروبا 2024-25كل ما تريد معرفته عن الحدث الكروي الأبرز

نادي آرسنال لكرة القدم: تاريخ عريق وإنجازات خالدة

نادي أرسنال: تاريخ عريق ومستقبل مشرق

نادي مانشستر يونايتد: قصة العراقة والبطولات